📘
Winter LLM Bootcamp
  • Welcome to the course. Bienvenue!
    • Course Structure
    • Course Syllabus and Timelines
    • Know your Educators
    • Action Items and Prerequisites
    • Bootcamp Kick-Off Session
  • Basics of LLMs
    • What is Generative AI?
    • What is a Large Language Model?
    • Advantages and Applications of LLMs
    • Bonus Resource: Multimodal LLMs and Google Gemini
  • Word Vectors, Simplified!
    • What is a Word Vector
    • Word Vector Relationships
    • Role of Context in LLMs
    • Transforming Vectors into LLM Responses
    • Bonus Section: Overview of the Transformers Architecture
      • Attention Mechanism
      • Multi-Head Attention and Transformers Architecture
      • Vision Transformers
    • Graded Quiz 1
  • Prompt Engineering and Token Limits
    • What is Prompt Engineering
    • Prompt Engineering and In-context Learning
    • Best Practices to Follow
    • Token Limits and Hallucinations
    • Prompt Engineering Excercise (Ungraded)
      • Story for the Excercise: The eSports Enigma
      • Your Task for the Module
  • Retrieval Augmented Generation (RAG) and LLM Architecture
    • What is Retrieval Augmented Generation (RAG)
    • Primer to RAG: Pre-trained and Fine-Tuned LLMs
    • In-Context Learning
    • High-level LLM Architecture Components for In-Context Learning
    • Diving Deeper: LLM Architecture Components
    • Basic RAG/LLM Architecture Diagram with Key Steps
    • RAG versus Fine-Tuning and Prompt Engineering
    • Versatility and Efficiency in RAG
    • Understanding Key Benefits of Using RAG in Enterprises
    • Hands-on Demo: Performing Similarity Search in Vectors (Bonus Module)
    • Using kNN and LSH to Enhance Similarity Search (Bonus Module)
    • Graded Quiz 2
  • Hands-on Development
    • Prerequisites
    • Dropbox Retrieval App
      • Understanding Docker
      • Building the Dockerized App
      • Retrofitting our Dropbox app
    • Amazon Discounts App
      • How the project works
      • Repository Walkthrough
    • How to Run 'Examples'
    • Bonus Section: Real-time RAG with LlamaIndex and Pathway
  • Bonus Resource: Recorded Interactions from the Archives
  • Final Project + Giveaways
    • Prizes and Giveaways
    • Suggested Tracks for Ideation
    • Form for Submission
Powered by GitBook
On this page

Was this helpful?

  1. Hands-on Development

Amazon Discounts App

PreviousRetrofitting our Dropbox appNextHow the project works

Last updated 1 year ago

Was this helpful?

In this tutorial, we will build an app called "Amazon Discounts App" that can find real-time sales and deals for Amazon products by leveraging the LLM App library. In this case, instead of cloning this Discounts app repository, we'll try to observe and learn how it uses the LLM App with the Prices API to give the desired results.

An interesting thing to know: This use case is quite common in the E-commerce industry. For instance, a highlights how players like Amazon, along with Indian e-commerce giants Flipkart and Myntra, have implemented similar features to enhance their customer experience.

In this project, we use two data sources:

  • Discounts CSV with product and price data

These two sources are used just to show how you can upload a CSV along with another real-time data source. While you can use a similar approach with other APIs, even this showcase opens up considerable possibilities in E-Commerce applications.

Rainforest API for Realtime Amazon Prices
💡
Fortune Magazine article