📘
Winter LLM Bootcamp
  • Welcome to the course. Bienvenue!
    • Course Structure
    • Course Syllabus and Timelines
    • Know your Educators
    • Action Items and Prerequisites
    • Bootcamp Kick-Off Session
  • Basics of LLMs
    • What is Generative AI?
    • What is a Large Language Model?
    • Advantages and Applications of LLMs
    • Bonus Resource: Multimodal LLMs and Google Gemini
  • Word Vectors, Simplified!
    • What is a Word Vector
    • Word Vector Relationships
    • Role of Context in LLMs
    • Transforming Vectors into LLM Responses
    • Bonus Section: Overview of the Transformers Architecture
      • Attention Mechanism
      • Multi-Head Attention and Transformers Architecture
      • Vision Transformers
    • Graded Quiz 1
  • Prompt Engineering and Token Limits
    • What is Prompt Engineering
    • Prompt Engineering and In-context Learning
    • Best Practices to Follow
    • Token Limits and Hallucinations
    • Prompt Engineering Excercise (Ungraded)
      • Story for the Excercise: The eSports Enigma
      • Your Task for the Module
  • Retrieval Augmented Generation (RAG) and LLM Architecture
    • What is Retrieval Augmented Generation (RAG)
    • Primer to RAG: Pre-trained and Fine-Tuned LLMs
    • In-Context Learning
    • High-level LLM Architecture Components for In-Context Learning
    • Diving Deeper: LLM Architecture Components
    • Basic RAG/LLM Architecture Diagram with Key Steps
    • RAG versus Fine-Tuning and Prompt Engineering
    • Versatility and Efficiency in RAG
    • Understanding Key Benefits of Using RAG in Enterprises
    • Hands-on Demo: Performing Similarity Search in Vectors (Bonus Module)
    • Using kNN and LSH to Enhance Similarity Search (Bonus Module)
    • Graded Quiz 2
  • Hands-on Development
    • Prerequisites
    • Dropbox Retrieval App
      • Understanding Docker
      • Building the Dockerized App
      • Retrofitting our Dropbox app
    • Amazon Discounts App
      • How the project works
      • Repository Walkthrough
    • How to Run 'Examples'
    • Bonus Section: Real-time RAG with LlamaIndex and Pathway
  • Bonus Resource: Recorded Interactions from the Archives
  • Final Project + Giveaways
    • Prizes and Giveaways
    • Suggested Tracks for Ideation
    • Form for Submission
Powered by GitBook
On this page

Was this helpful?

  1. Hands-on Development

Dropbox Retrieval App

PreviousPrerequisitesNextUnderstanding Docker

Last updated 1 year ago

Was this helpful?

Let's dive into the setup and operation of the Dropbox AI Chat tool, an innovative solution enabling you to efficiently search through extensive, unstructured documents stored in your Dropbox using advanced AI capabilities.

What you'll be building can be seen below. In this particular example, we'll be cloning to enable you to quickly build a similar application.

Please note, that this project's aim isn't about focusing on Dropbox or any specific tool.

This example illustrates the vast possibilities at your fingertips. In this module, we're offering you the starting points to spark your creativity and engineering acumen. 😊

Instead, we're here to explore the world of open-source RAG-based applications, which are not only impactful but also blend seamlessly with many popular tools you're already familiar with. Take inspiration from a previous bootcamp cohort, where a learner integrated real-time data from Trello's board and Slack to create a useful tool ().

GitHub link
this particular repository